cmiVFX Logo

Houdini XML Based Procedural Cities

This Houdini video shows how to use Python to import city map data and turn it into a city skeleton to be used in a more accurate 3D City representation. Any map will generate any city. This is Part 1 in a multi-part video series. Subscriptions will automatically have the next videos added.

Length: 1 Hour 53 Minutes 51 Seconds

Price: $39.95

Houdini XML Based Procedural Cities

6c2a92f1 1cca 48bb 9884 75f1f9049fb8
C96d1de5 765d 446d 9beb 2925253fd3ed
Ad24d2a3 851b 4a4e 98de 43cac7e0e678
5b335def 7e96 4d92 9219 228adecceaf5
8488414f c7fa 4373 abd2 e211c592afbe
9dc5f7e7 4fd3 4ce8 ae17 208393355de5

cmiVFX launches its latest Full Feature training video in Houdini Generating Regional Procedural City Skeletons using Real GPS Data. Once again on the cutting edge of creating real world projects, cmiVFX demonstrates how to import map data and create Virtual Cities from around the world. Generating cities or street level data previously would take weeks or months and a team of artist. cmiVFX has streamlined that process with this innovative New Houdini series of creating skeleton cities. There is an increasing demand for creating virtual cities for film and broadcasting projects, however getting a city built and prepare it for deployment is not an easy task. The time and resources spent can be very time consuming and costly. cmiVFX provides an innovative solution in automating this virtual city generation process and reduces the time considerably as well as the resources allocated. Nothing is better than Houdini for such projects, but this course is not limited to just this application, the techniques demonstrated here can be utilized with any other 3D application and it will work the same.

Chapter Descriptions


There are many techniques that can be used to generate city patterns; in this video the one demonstrated will be how to use the data of a real life city, exported from, to generate a custom variant of it. The city data used is the same kind of data used in GPS devices, while the GPS uses it to give routing information and data, here the data will be used to generate 3D cities.

XML Conversion

The first step in the process is to identify what city will be the target of the project. Once the city is determined the OSM data must be exported from the open street map, which is an XML variant. Manhattan being the city of choice for this tutorial project, the video will demonstrate how to export Manhattan's data from Open Street Map (OSM). An overview will also be given to learn more about this data and its structure.

Parsing In Python

The exported data must be parsed into Houdini and Python scripting is the method of choice with this project. The data will be explored in more detail and the utilization of a Houdini Python SOP will write the corresponding code that will parse the first main part of the data and transform it into Houdini points. (Resembling our city of choice.)

Paving The Roadways

Combining the points already created in the previous sections with the second main part of our OSM data, this section will dive deeper into the data analysis. Covering more detail in the parsing and coding, the ability to be able to reconstruct the pattern of the city and treat different data types differently, like the roads, parks and buildings, will be discussed at lenght. At the end of this section the main skeleton of the city will be constructed and ready to be built upon.

Geometry Population

Begin filling the city with buildings, utilizing the OSM data. It is very important to mention that this data does not contain everything; in particular it does not contain all the buildings, a lot of them will be missing. To resolve this problem, the implementation of another Open Street Map export type will be utilized to extract the missing buildings using Houdini's COP's and customize the contour shapes if needed. The city will then be filled completely with the respective buildings.

About The Author

Georges Nakhle is 25 years old, lebanese, and has a masters degree in mechanical engineering. he has a wide artistic and scientific knowledge, he began his art steps with traditional painting and sculpting then gained a diploma in dramatic monologue (acting -singing), he has worked as a writer and perfomer in radio and TV. combining arts and science led him to CG, so he mastered many 3D tools such as Maya and houdini, he's also a programmer so he's currently working for dassault systemes in Paris-France and he had also worked in combination between Dassault-Systemes and mental images the makers of mental-ray. He is very picky about the details and he believes that every small detail contributes to the finished product.



Video-on-demand streaming is available through the website to subscribers. In addition, video files are available for download for those who directly purchase individual titles from their cart.